Clifford Algebras and Shimura ’ S Lift for Theta - Series Fedor Andrianov

نویسنده

  • FEDOR ANDRIANOV
چکیده

Automorph class theory formalism is developed for the case of integral nonsingular quadratic forms in an odd number of variables. As an application, automorph class theory is used to construct a lifting of similitudes of quadratic Z-modules of arbitrary nondegenerate ternary quadratic forms to morphisms between certain subrings of associated Clifford algebras. The construction explains and generalizes Shimura’s correspondence in the case of thetaseries of positive definite ternary quadratic forms. Relations between associated zeta-functions are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Invariant Subspaces and Eigenfunctions for Regular Hecke Operators on Spaces of Multiple Theta Constants

Invariant subspaces and eigenfunctions for regular Hecke operators actinng on spaces spanned by products of even number of Igusa theta constants with rational characteristics are constructed. For some of the eigenfunctions of genuses g = 1 and 2, the corresponding zeta functions of Hecke and Andrianov are explicitely calculated.

متن کامل

Heights of Heegner Points on Shimura Curves

Introduction 2 1. Shimura curves 6 1.1. Modular interpretation 6 1.2. Integral models 13 1.3. Reductions of models 17 1.4. Hecke correspondences 18 1.5. Order R and its level structure 25 2. Heegner points 29 2.1. CM-points 29 2.2. Formal groups 34 2.3. Endomorphisms 37 2.4. Liftings of distinguished points 40 3. Modular forms and L-functions 43 3.1. Modular forms 44 3.2. Newforms on X 49 3.3. ...

متن کامل

A NOTE ON THE SHIMURA CORRESPONDENCE AND THE RAMANUJAN τ(n) FUNCTION

The Shimura correspondence is a family of maps which sends modular forms of half-integral weight to forms of integral weight by a Mellin transform [9]. Prior to Shimura’s work, Selberg discovered a special case of this correspondence when the half-integral weight form is a cusp eigenform on SL2(Z) times the classical theta function. In a recent paper [1], Cipra generalizes Selberg’s method and ...

متن کامل

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

متن کامل

Theta Functionswith Harmonic Coe⁄cients over Number Fields

is a modular form of weight n=2þ n on G0ðN Þ, where G 1⁄4 SL2ðZÞ and N is the level of Q, i.e., NQ 1 is integral and NQ 1 has even diagonal entries. This was proved by Schoeneberg [13] for even n and by Pfetzer [9] for odd n. Shimura [14] generalizes their results for arbitrary n and also computes the theta multiplier explicitly. Andrianov and Maloletkin [1, 2] generalize (1) and define theta s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999